NOVA IMS

Information Management School

### Master Program in Information Management

### **Understanding Students' Academic Achievement**

**Evidence for Portugal** 

Instituto Superior de Estatística e Gestão da Informação Universidade Nova de Lisboa Acreditações e Certificaçõ















### Index



2



### Introduction

| timeless topic    | human capital      | new business          | es and technologies |  |
|-------------------|--------------------|-----------------------|---------------------|--|
| informatio        | on and knowledge   | variation of salaries |                     |  |
| country           | development        | social ex             | clusion             |  |
| discrimination of | of minority groups | education             | world of work       |  |

**Research Question** 

• Which factors affect students' academic achievement





Parents





# **Theoretical Background - Research**

| Ref                         | Methods                                                             | Students | Parents | Schools | Teachers |
|-----------------------------|---------------------------------------------------------------------|----------|---------|---------|----------|
| (Hanushek & Kimko, 2000)    | Regression models                                                   | х        |         | х       |          |
| (Hoxby, 2000)               | Regression models                                                   | х        |         | х       |          |
| (Fan & Chen, 2001)          | General linear model (GLM)                                          | х        | х       |         |          |
| (Barnett et al., 2002)      | Linear Programming techniques                                       |          |         | х       |          |
| (Rockoff, 2004)             | Regression models                                                   |          |         |         | х        |
| (Driessen et al., 2005)     | Frequency, Variance and Structural models                           | x        | x       | x       |          |
| (Rivkin et al., 2005)       | Regressions models                                                  |          |         | х       | х        |
| (Archibald, 2006)           | Hierarchical linear models (HLM)                                    | х        |         | х       | х        |
| (Jackson et al., 2006)      | Internet recorded                                                   | х        |         |         |          |
| (JS. Lee & Bowen, 2006)     | Hierarchical linear models (HLM)                                    | х        | х       |         |          |
| (Marks et al., 2006)        | Item Response Theory (IRT)<br>Regression models                     | x        | x       | x       |          |
| (Jeynes, 2007)              | Regression models                                                   |          | х       |         |          |
| (Codjoe, 2007)              | Interviews                                                          | х        |         |         |          |
| (Croninger et al., 2007)    | Hierarchical linear models (HLM)                                    | х        |         |         | х        |
| (H. Lee, 2007)              | Hierarchical linear models (HLM)<br>Classic lineal regression model | x        | x       | x       |          |
| (Lei & Zhao, 2007)          | Hierarchical linear models (HLM)<br>ANOVA tests                     | x        |         |         |          |
| (Steinmayr & Spinath, 2008) | Regressions models                                                  | х        |         |         |          |
| (Caro et al., 2009)         | Hierarchical linear models (HLM)<br>Panel data models               | x        |         |         |          |



### **Theoretical Background - Research**

| (Mensah & Kiernan, 2010)       | Tobit regression models<br>Univariate and Multivariate analyses                                                 | x | x |   |   |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------|---|---|---|---|
| (Hanushek, 2011)               | Regression models                                                                                               |   |   |   | х |
| (Hartas, 2011)                 | Univariate analyses of variance<br>Chi-square tests                                                             |   | х |   |   |
| (Patterson & Pahlke, 2011)     | Regression models                                                                                               | х | х |   |   |
| (Hanushek & Woessmann, 2012)   | Regression models                                                                                               | х |   | х |   |
| (Brunner et al., 2013)         | Multiple group factor analytic models<br>Full maximum likelihood method "MLR"                                   | x |   |   |   |
| (Wally-Dima & Mbekomize, 2013) | Descriptive statistics T tests                                                                                  | х |   |   |   |
| (Bosworth, 2014)               | Regression models                                                                                               | х |   | x |   |
| (Krassel & Heinesen, 2014)     | Regression discontinuity design (RDD)<br>Control for school fixed effects (SFE)<br>Ordinary Least Squares (OLS) | x | x | x |   |
| (Vigdor et al., 2014)          | Probit regression<br>Regression models                                                                          | x |   |   |   |
| (Hodis et al., 2015)           | Hierarchical linear models (HLM)                                                                                | х |   |   |   |
| (C. L. Lee & Mallik, 2015)     | Ordinary Least Squares (OLS)                                                                                    | х |   |   |   |

| Students | 24 papers |  |  |  |
|----------|-----------|--|--|--|
| Parents  | 10 papers |  |  |  |
| Schools  | 11 papers |  |  |  |
| Teachers | 5 papers  |  |  |  |









Students' academic achievement





- Involvement
- Expectations
- Socioeconomic Status
- Unemployment





- Class Size
- School Size





Students' academic achievement











### **Conceptual Model**

#### **Students' Variables:**

H1

• Gender will have an impact on students' academic achievement as females will perform better

#### H2

• Native students will perform better on academic achievement

#### H3

• Students with computer access will perform better on academic achievement

#### H4

• Students with internet access will perform better on academic achievement

#### H5

• Students that have reproved in the past will present lower levels on academic achievement in the future **Parents' Variables:** 

#### H6

• Students that receive support from social services (SASE) will have lower levels on academic achievement

H7

• Students that receive family financial support will have lower levels on academic achievement

#### H8

• Parents education level will have a positive impact on academic achievement

#### Schools' Variables:

#### H9

• Class size will have a negative impact on academic achievement

#### H10

• School size will have a positive impact on academic achievement



- DGEEC MISI Database
  - Students from: Portuguese public schools in 2014/2015 from 10<sup>th</sup>, 11<sup>th</sup> and 12<sup>th</sup> grades evaluated and attending the 21 courses
- INE
  - Population density
  - Monthly average income
  - Percentage average on culture expenses
  - Aging index
  - Residence population
  - Unemployment rate

#### 383560 observations



### Methodology – Non-Parametric tests

Dependent variable – Final Classification doesn't follow a normal distribution



| Test for Normality |              |                              |  |  |  |  |
|--------------------|--------------|------------------------------|--|--|--|--|
| Test               | Statistic    | P-Value                      |  |  |  |  |
| Kolmogorov-Smirnov | D = 0,099641 | Pr <d <0,0100<="" td=""></d> |  |  |  |  |



# Students characteristics



| Variables                  | n       | %     | Mean  | SD   | Mann-Whitney Conover<br>/Kruskal-Wallis (k) Variance Test |
|----------------------------|---------|-------|-------|------|-----------------------------------------------------------|
| Gender                     |         |       |       |      |                                                           |
| Female                     | 62.174  | 55.9% | 13.38 | 2.98 |                                                           |
| Male                       | 49.128  | 44.1% | 12.90 | 3.04 | -2548.4738**** -2.5849***                                 |
| Age (k)                    |         |       |       |      |                                                           |
| [0-16[                     | 153     | 0.2%  | 13.98 | 3.46 |                                                           |
| [16-18[                    | 90.682  | 81.5% | 13.36 | 2.99 | 14072 0262*** 2777 8620***                                |
| [19-21[                    | 19.731  | 17.7% | 11.45 | 2.67 | 140/2.9302 37/7.8020                                      |
| ]>=21]                     | 736     | 0.7%  | 11.74 | 3.66 |                                                           |
| N_Reprov by year           |         |       |       |      |                                                           |
| 10 <sup>th</sup> ,0 rep    | 10.475  | 9.4%  | 13.18 | 3.15 |                                                           |
| 10 <sup>th</sup> ,1 rep    | 2.870   | 2.6%  | 11.40 | 2.93 |                                                           |
| 10 <sup>th</sup> ,2 reps   | 187     | 0.2%  | 10.82 | 2.91 | 4050.3054 372.5845                                        |
| 10 <sup>th</sup> , +2reps  | 209     | 0.2%  | 12.08 | 2.95 |                                                           |
| 11 <sup>th</sup> ,0 rep    | 36.124  | 32.5% | 13.77 | 2.89 |                                                           |
| 11 <sup>th</sup> ,1rep     | 13.116  | 11.8% | 11.95 | 2.65 |                                                           |
| 11 <sup>th</sup> ,2reps    | 976     | 0.9%  | 11.09 | 2.64 | 10379.2848 2044.0207                                      |
| 11 <sup>th</sup> , +2reps  | 444     | 0.4%  | 11.08 | 3.72 |                                                           |
| 12 <sup>th</sup> ,0 rep    | 31.725  | 28.5% | 13.64 | 2.88 |                                                           |
| 12 <sup>th</sup> ,1 rep    | 13.990  | 12.6% | 11.61 | 2.67 |                                                           |
| 12 <sup>th</sup> ,2 reps   | 785     | 0.7%  | 10.93 | 2.86 | 9023.3129 1871.3402                                       |
| 12 <sup>th</sup> , +2 reps | 401     | 0.4%  | 11.83 | 3.51 |                                                           |
| Nationality                |         |       |       |      |                                                           |
| Portugal                   | 108.134 | 97.2% | 13.19 | 3.01 | 720 1705*** 0 0427***                                     |
| Other                      | 3.168   | 2.8%  | 12.37 | 3.01 | /30.1/85*** -6.042/***                                    |

For a significance level of 1%, we reject the null hypothesis (p-value <0.0001)



Parents' Socioeconomics characteristics



| Variables                      | n      | %     | Mean  | SD   | Kruskal-Wallis | Conover<br>Variance Test |
|--------------------------------|--------|-------|-------|------|----------------|--------------------------|
| Beneficiary_SASE               |        |       |       |      |                |                          |
| No Support                     | 81.787 | 73.5% | 13.33 | 3.05 | _              |                          |
| Level 1 (Highest support)      | 15.215 | 13.7% | 12.89 | 2.88 | 3119.6251***   | 1080.8923***             |
| Level 2 (Highest support)      | 14.300 | 12.8% | 12.59 | 2.87 | _              |                          |
| Family Financial support (FFS) |        |       |       |      |                |                          |
| No Support                     | 81.406 | 73.1% | 13.32 | 3.05 |                |                          |
| Level 1 (Highest support)      | 13.351 | 12.0% | 12.59 | 2.85 | -              | 1151.4959***             |
| Level 2 (Medium support)       | 15.242 | 13.7% | 12.89 | 2.88 | 2920.3323      |                          |
| Level 3 (Lowest support)       | 1.303  | 12.0% | 13.22 | 2.94 | _              |                          |

For a significance level of 1%, we reject the null hypothesis (p-value <0.0001)



# Schools characteristics



| Variables   | n      | %     | Mean  | SD   | Kruskal-Wallis | Conover<br>Variance Test |
|-------------|--------|-------|-------|------|----------------|--------------------------|
| Class Size  |        |       |       |      |                |                          |
| [1-10]      | 864    | 0.8%  | 12.66 | 2.93 |                |                          |
| ]10-20]     | 14.389 | 12.9% | 13.01 | 2.93 |                | 588.0421***              |
| ]20-25]     | 25.974 | 23.3% | 13.16 | 2.97 |                |                          |
| ]25-30]     | 52.046 | 46.8% | 13.29 | 3.05 | 971.5192       |                          |
| ]30-40]     | 17.152 | 15.4% | 12.93 | 3.02 | -              |                          |
| ]>=40[      | 877    | 0.8%  | 12.15 | 3.44 |                |                          |
| School Size |        |       |       |      |                |                          |
| [1-100]     | 2.469  | 2.2%  | 12.83 | 3.14 |                |                          |
| ]100-200]   | 8.954  | 8.0%  | 12.85 | 3.01 |                |                          |
| ]200-300]   | 9.293  | 8.3%  | 12.93 | 3.02 |                | 634.9647***              |
| ]300-500]   | 24.223 | 21.8% | 13.11 | 2.92 |                |                          |
| ]500-600]   | 10.073 | 9.1%  | 13.34 | 3.01 | 1092.5769***   |                          |
| ]600-700]   | 14.119 | 12.7% | 13.30 | 3.01 |                |                          |
| ]700-900]   | 11.762 | 17.8% | 13.12 | 3.08 |                |                          |
| ]>=900[     | 22.352 | 20.1% | 13.34 | 3.04 |                |                          |

For a significance level of 1%, we reject the null hypothesis (p-value <0.0001)



Courses by Gender



| Variables                           | n      | %     | Mean  | SD   | Kruskal-Wallis | Conover<br>Variance Test |
|-------------------------------------|--------|-------|-------|------|----------------|--------------------------|
| Courses by Gender                   |        |       |       |      |                |                          |
| Drawing A, Female                   | 4.359  | 1.1%  | 14.75 | 2.32 | 90 1640***     | 1 0926***                |
| Drawing A, Male                     | 2.021  | 0.5%  | 14.14 | 2.42 | - 89.1049      | 1.9850                   |
| Philosophy, Female                  | 32.715 | 8.5%  | 13.76 | 2.84 | 1020 7000***   | 6 2612***                |
| Philosophy, Male                    | 25.705 | 6.7%  | 13.00 | 2.83 | - 1038.7988    | -0.2012                  |
| History A, Female                   | 13.506 | 3.5%  | 12.50 | 2.66 | 104 2020***    | 0.0012***                |
| History A, Male                     | 6.465  | 1.7%  | 12.09 | 2.54 | - 104.3030***  | -8.9812***               |
| Foreign Language – English,         | 32.701 | 8.5%  | 14.41 | 3.16 |                |                          |
| Female                              |        |       |       | -    | - 15 /212***   | -1/ 20/1***              |
| Foreign Language – English,<br>Male | 26.645 | 7.0%  | 14.51 | 3.00 | 13.4312        | -14.2941                 |
| Mathematics A, Female               | 23.757 | 6.2%  | 13.01 | 3.49 | 244 4220***    | 4 5765***                |
| Mathematics A, Male                 | 23.302 | 6.1%  | 12.43 | 3.56 | - 314.4330***  | -1.5/65***               |
| Portuguese, Female                  | 43.285 | 11.3% | 13.20 | 2.47 | 2500 7112***   | E C111***                |
| Portuguese, Male                    | 33.148 | 8.6%  | 12.30 | 2.46 | - 2508.7112    | -3.0441                  |

For a significance level of 1%, we reject the null hypothesis (p-value < 0.0001)



NOVA Information Management

School

### **Results - Decision Tree - Model 1**



- Quantitative Courses: Descriptive Geometry A, Mathematics A, Mathematics applied to Social Sciences, Mathematics B, Physics and Chemistry A, Portuguese as non Maternal Language
- Qualitative Courses: Biology and Geology, Drawing A, Economy A, Foreign Language English, Foreign Language French, Foreign Language German, Foreign Language Spanish, Geography A, History A, History B, History of Culture and Arts, Latin A, Philosophy, Portuguese, Portuguese Literature

NOVA Information Management School

### **Results - Decision Tree - Model 2**



0 – Students with positive approval rate; 1 – Students with reprove rate



### **Results – Cumulative Lift**



#### NOVA IMS Information Management School

# **Discussion - Findings**





### **Practical and Theoretical Implications**





Students coming from less wealthy households obtain lower scholar performances

academic achievement among female and male genders

**M** 



# **Limitations and Future Work**

Data Quality: Data pre-processing took considerable time; Missing values and data inconsistency are aspects to improve

 $\rightarrow$ 

Further developments are needed in the way data is recorded and stored

Data used is cross-sectional



It would be interesting to do an analysis on academic achievement for multiple points in time

Recurred to secondary data



Include other potential antecedents/variables of academic achievement and consequently other type of methods

# Thank you!

By: Ana Filipa Rosa Louro

Advisor: Professor Doutor Frederico Miguel de Campos Cruz Ribeiro de Jesus Co Advisor: Engenheiro Jorge Nelson Gouveia de Sousa Neves

Address: Campus de Campolide, 1070-312 Lisboa, Portugal Phone: +351 213 828 610 Fax: +351 213 828 611













Universidade Nova de Lisboa